88 research outputs found

    Real time integration of user preferences into virtual prototypes

    Get PDF
    Within new product development (NPD), both virtual prototypes and physical prototypes play important roles in creating, testing and modifying designs. However, in the current design process, these two forms of prototyping methods are normally used independently and converted from one to the other during different design phases. This conversion process is time consuming and expensive and also introduces potential information loss/corruption problems. If the design process requires many iterations, it may simply be impractical to generate all the conversions that are theoretically required. Therefore, the integration of virtual and physical prototyping may offer a possible solution where the design definition is maintained simultaneously in both the virtual and physical environment. The overall aim of this research was to develop an interface or a tool that achieves real time integration of physical and virtual prototyping. “Real time integration” here means changes to the virtual prototypes will reflect any changes that have been made contemporaneously to the physical prototypes, and vice versa. Thus, conversion of the prototype from physical to virtual (or vice versa) will be achieved immediately, hence saving time and cost. A review of the literature was undertaken to determine what previous research has been conducted in this area. The result of the review shows the research in this area is still in its infancy. The research hypothesis was developed through the use of a questionnaire survey. Totally 102 questionnaires were sent to designers, design directors or design managers to address the issue: will industrial designers want to make use of real time integration and if so, how? The outcome from the literature review drove further development of the research hypothesis and an initial pilot experiment to test this. The pilot trial was designed to address the research questions: • Can real time physical and virtual prototyping integration be conveniently demonstrated? • Will designers and users be comfortable using the integration method? • Will users recognise the benefits of the integration? The results showed that real time integration between physical and virtual prototyping is necessary in helping designers develop new products and for getting users more closely involved. The future research suggested is that more investigations and experiments are needed to explore a proper method that simultaneously employing these two types of prototyping in product development process. Keywords: Physical Prototyping; Virtual Prototyping; Integration; Real Time.</p

    Integration of physical and virtual prototyping

    Get PDF
    Description: This research was concerned with the integration of physical and virtual prototyping to support user evaluation in the product design process. The research background, research aim and research objectives which give the overall guide to this research are introduced first. The top-level aim of the research was to explore the ways that physical and virtual prototypes can be simultaneously combined to support industrial designers in testing and modifying their designs. A comprehensive literature review was undertaken into the topics of product design and development, the role of physical and virtual prototype/prototyping and related prototyping integration technologies. A questionnaire survey regarding the applications of prototypes is then presented. The knowledge gained from these was used to define the needs of real time integration of physical and virtual prototyping. A method to quickly transfer the changes in a physical prototype to a virtual prototype has been proposed and developed into an integration system known as the Loughborough University Prototyping Integration System (LUPIS). The feasibility and potential benefits of this system were tested through several user trials. The generic implementation of LUPIS is then discussed and an example of the configuration of this system for a motorcycle is presented. Finally, conclusions about the outcome of the research and suggestions for future work are provided. The main conclusions drawn from the research were: Real time integration of physical and virtual prototypes/prototyping is an efficient way of helping product design activities, especially in the product evaluation process. LUPIS has presented a new approach to achieve the real time integration. However, more advanced technologies are needed to develop this system and make it more sophisticated. The main contributions of this research include: i) a deeper understanding of the applications of physical and virtual prototyping (obtained through literature review and questionnaire survey), ii) the needs of real time integration of physical and virtual prototyping has been defined; iii) a wide range of technologies related to prototyping integration have been investigated and analysed, and their limitations are identified; iv) The Loughborough University Prototyping Integration System has been developed and a generic implementation method has been also proposed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Experimental study of detonation limits in methane-oxygen mixtures: Distinguishing tube scale and initial pressure effects

    Get PDF
    In this paper, detonation limits in stoichiometric methane-oxygen mixtures with varying tube inner diameter and initial mixture pressure were investigated. Detonations in tubes with different inner diameter (D = 36 mm, 25 mm, 20 mm and 13 mm) and low initial pressure from 3.5 ~ 18 kPa were studied. Smoked foils were applied to observe the evolution of the detonation cellular structure for various initial conditions. An alternate length scale at the limits is examined, Ldcs, which is the maximum length from the beginning of the test section after which cellular patterns can no longer be observed. Simultaneous local velocity measurements were obtained by photodiodes to complement the Ldcs results. The study also aims to reveal relation between the near-limit detonation dynamics, the tube geometry, and the thermodynamic properties of the mixture. Past the failure limit, Ldcs decreases with decreasing initial mixture pressure for a given tube diameter, and Ldcs decreases faster in a smaller diameter tube. In the D = 13 mm tube, galloping detonation mode is observed, and the length of the galloping cycle is reduced with an increase in initial pressure. To further characterize the onset of detonation limits, a scaling analysis of Ldcs with tube inner diameter (D) and detonation cell size (λ) was performed. The experimental results show that the decrease of Ldcs/D and Ldcs/λ are more abrupt in smaller diameter tubes with decreasing initial pressure. At low initial pressure, the boundary layer displacement thickness growth is significant in the flow structure. Since the distribution of global curvature over the whole detonation front is faster in smaller tube, it thus leads to a more abrupt decrease sensitive to initial pressure. For increasing pressure closer to the critical failure limit, the boundary layer displacement thickness is becoming less comparable to the tube diameter. The failure mechanism appears to be more dominant by the rate of transverse waves attenuation or cell disappearance. Lastly, by comparing the detonation cell size and the tube scale at the critical limits condition in different tubes, λ= πD is shown to be an appropriate limit criterion of detonation propagation in agreement previous studies

    Identification of Cathepsin K in the Peritoneal Metastasis of Ovarian Carcinoma Using In-silico, Gene Expression Analysis

    Get PDF
    Abstract Ovarian carcinomas (OC) are often found in the advanced stage with wide peritoneal dissemination. Differentially-expressed genes (DEGs) between primary ovarian carcinoma (POC) and peritoneal metastatic ovarian carcinomas (PMOC) may have diagnostic and therapeutic values. In this study, we identified 246 DEGs by in-silico analysis using microarrays for 153 POCs and 57 PMOCs. Pathway analysis shows that many of these genes are associated with lipid metabolism. Microfluidic, card-based, quantitative PCR validated 19 DEGs in PMOCs versus POCs (p&lt;0.05). Immunohistochemistry confirmed overexpression of MMP13, CTSK, FGF1 and GREM1 in PMOCs (p&lt;0.05). ELISA detection indicated that serum CTSK levels were significantly increased in OCs versus controls (p&lt;0.001). CTSK levels discriminated between OCs and healthy controls (ROC 0.739;. Combining CA125 and HE4 with CTSK levels produced an improved specificity in the predictive of OCs (sensitivity 88.3%, specificity 92.0%, Youden&apos;s index 80.3%). Our study suggests that CTSK levels may be helpful in the diagnosis of primary, ovarian carcinoma

    Dynamic changes in fecal microbiota in donkey foals during weaning: From pre-weaning to post-weaning

    Get PDF
    IntroductionA better understanding of the microbiota community in donkey foals during the weaning transition is a prerequisite to optimize gut function and improve feed efficiency. The objective of the present study was to investigate the dynamic changes in fecal microbiota in donkey foals from pre-to post-weaning period.MethodsA total of 27 fecal samples of donkey foals were collected in the rectum before morning feeding at pre-weaning (30 days of age, PreW group, n = 9), dur-weaning (100 days of age, DurW group, n = 9) and post-weaning (170 days of age, PostW group, n = 9) period. The 16S rRNA amplicon sequencing were employed to indicate the microbial changes during the weaning period.ResultsIn the present study, the cessation of breastfeeding gradually and weaning onto plant-based feeds increased the microbial diversity and richness, with a higher Shannon, Ace, Chao and Sobs index in DurW and PostW than in PreW (p &lt; 0.05). The predominant bacterial phyla in donkey foal feces were Firmicutes (&gt;50.5%) and Bacteroidota (&gt;29.5%), and the predominant anaerobic fungi and archaea were Neocallimastigomycota and Euryarchaeota. The cellulolytic related bacteria including phylum Firmicutes, Spirochaetota and Fibrobacterota and genus norank_f_F082, Treponema, NK4A214_group, Lachnospiraceae_AC2044_group and Streptococcus were increased from pre-to post-weaning donkey foals (p &lt; 0.05). Meanwhile, the functions related to the fatty acid biosynthesis, carbohydrate metabolism and amino acid biosynthesis were significantly enriched in the fecal microbiome in the DurW and PostW donkeys. Furthermore, the present study provided the first direct evidence that the initial colonization and establishment of anaerobic fungi and archaea in donkey foals began prior to weaning. The relative abundance of Orpinomyces were the highest in DurW donkey foals among the three groups (p &lt; 0.01). In terms of archaea, the abundance of Methanobrevibacter were higher in PreW than in DurW and PostW (p &lt; 0.01), but the abundance of Methanocorpusculum were significantly increased in DurW and PostW compared to PreW donkey foals (p &lt; 0.01).DiscussionAltogether, the current study contributes to a comprehensive understanding of the development of the microbiota community in donkey foals from pre-to post-weaning period, which may eventually result in an improvement of the digestion and feed efficiency in donkeys

    Transcriptomic Sequencing Analysis on Key Genes and Pathways Regulating Cadmium (Cd) in Ryegrass (Lolium&nbsp;perenne L.) under Different Cadmium Concentrations

    No full text
    Perennial ryegrass (Lolium&nbsp;perenne L.) is an important forage grass and has the potential to be used in phytoremediation, while little information is available regarding the transcriptome profiling of ryegrass leaves in response to high levels of Cd. To investigate and uncover the physiological responses and gene expression characteristics of perennial ryegrass under Cd stress, a pot experiment was performed to study the transcriptomic profiles of ryegrass with Cd-spiked soils. Transcriptome sequencing and comparative analysis were performed on the Illumina RNA-Seq platform at different concentrations of Cd-treated (0, 50 and 500 mg&middot;kg&minus;1 soil) ryegrass leaves and differentially expressed genes (DEGs) were verified by RT-qPCR. The results show that high concentrations of Cd significantly inhibited the growth of ryegrass, while the lower concentrations (5 and 25 mg&middot;kg&minus;1) showed minor effects. The activity levels of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) increased in Cd-treated ryegrass leaves. We identified 1103 differentially expressed genes (DEGs) and profiled the molecular regulatory pathways of ryegrass leaves with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in response to Cd stress. Cd stress significantly increased the membrane part, the metabolic process, the cellular process and catalytic activity. The numbers of unigenes related to signal transduction mechanisms, post-translational modification, replication, recombination and repair significantly increased. KEGG function annotation and enrichment analysis were performed based on DEGs with different treatments, indicating that the MAPK signaling pathway, the mRNA surveillance pathway and RNA transport were regulated significantly. Taken together, this study explores the effect of Cd stress on the growth physiology and gene level of ryegrass, thus highlighting significance of preventing and controlling heavy metal pollution in the future

    An Embedded Portable Lightweight Platform for Real-Time Early Smoke Detection

    No full text
    The advances in developing more accurate and fast smoke detection algorithms increase the need for computation in smoke detection, which demands the involvement of personal computers or workstations. Better detection results require a more complex network structure of the smoke detection algorithms and higher hardware configuration, which disqualify them as lightweight portable smoke detection for high detection efficiency. To solve this challenge, this paper designs a lightweight portable remote smoke front-end perception platform based on the Raspberry Pi under Linux operating system. The platform has four modules including a source video input module, a target detection module, a display module, and an alarm module. The training images from the public data sets will be used to train a cascade classifier characterized by Local Binary Pattern (LBP) using the Adaboost algorithm in OpenCV. Then the classifier will be used to detect the smoke target in the following video stream and the detected results will be dynamically displayed in the display module in real-time. If smoke is detected, warning messages will be sent to users by the alarm module in the platform for real-time monitoring and warning on the scene. Case studies showed that the developed system platform has strong robustness under the test datasets with high detection accuracy. As the designed platform is portable without the involvement of a personal computer and can efficiently detect smoke in real-time, it provides a potential affordable lightweight smoke detection option for forest fire monitoring in practice
    corecore